Estimation of Ambiguous Change in 4WS Control System Using Generalized Likelihood Ratio.

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model

Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...

متن کامل

Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation

In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...

متن کامل

Detection and Estimation of Multiple Fault Profiï¿1⁄2les Using Generalized Likelihood Ratio Tests: A Case Study

Aircraft and spacecraft electrical power distribution systems are critical to overall system operation, but these systems may experience faults. Early fault detection makes it easier for system operators to respond and avoid catastrophic failures. This paper discusses a fault detection scheme based on a tunable generalized likelihood algorithm. We discuss the detector algorithm, and then demons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series C

سال: 1997

ISSN: 0387-5024,1884-8354

DOI: 10.1299/kikaic.63.386